1,如果我有很多组,我希望Function可以是一个统一的公式,比如aX^5+bX^4+cX^3+dX^2+dX+e=0,每组的差异只是a,b,c,d,e的不同,可不可能?
:因为你有可能要近似通过,所以一组数据对应的公式有无穷多个。并且还有其它要求,比如:有可能希望拟合出来的曲线是一条封闭曲线吗?
No, I will have a valid range for X serial.
2,是不是越高的元次表达的精度越高,比如aX^5+bX^4+cX^3+dX^2+dX+e=0的精度就高过bX^4+cX^3+dX^2+dX+e=0?
:公式的类型可能有很多种。最简单的当然是线性的了,其它的可能有指数型、幂函数型、……
Since, there is more than one possibility, as you have mentioned in Item 1, I would prefer to use uniformed formula, like aX^5+bX^4+cX^3+dX^2+dX+e=0. I would prefer not to touch 指数型、幂函数型, etc.
:因为你有可能要近似通过,所以一组数据对应的公式有无穷多个。并且还有其它要求,比如:有可能希望拟合出来的曲线是一条封闭曲线吗?
No, I will have a valid range for X serial.
2,是不是越高的元次表达的精度越高,比如aX^5+bX^4+cX^3+dX^2+dX+e=0的精度就高过bX^4+cX^3+dX^2+dX+e=0?
:公式的类型可能有很多种。最简单的当然是线性的了,其它的可能有指数型、幂函数型、……
Since, there is more than one possibility, as you have mentioned in Item 1, I would prefer to use uniformed formula, like aX^5+bX^4+cX^3+dX^2+dX+e=0. I would prefer not to touch 指数型、幂函数型, etc.