×

Loading...
Ad by
  • 推荐 OXIO 加拿大高速网络,最低月费仅$40. 使用推荐码 RCR37MB 可获得一个月的免费服务
Ad by
  • 推荐 OXIO 加拿大高速网络,最低月费仅$40. 使用推荐码 RCR37MB 可获得一个月的免费服务

大三数学题: 呼唤数学达人。。。。。。。。


:

:

Report

Replies, comments and Discussions:

  • 工作学习 / 学科技术 / 大三数学题: 呼唤数学达人。。。。。。。。 +1


    :

    :

    • 关键是把任何一个数分解为质数的乘积,而且小于15 的,只有6 个质数:2,3,5,7,11,13

      但是 很难总结出一个通用的计算公式 并加以证明
      请高人帮忙
      • 就是这个数有多少个因子。

        例如:100=9,100=[1, 2, 4, 5, 10, 20, 25, 50, 100]

        {1=[1], 2=[1, 2], 3=[1, 3], 4=[1, 2, 4], 5=[1, 5], 6=[1, 2, 3, 6], 7=[1, 7], 8=[1, 2, 4, 8], 9=[1, 3, 9], 10=[1, 2, 5, 10], 11=[1, 11], 12=[1, 2, 3, 4, 6, 12], 13=[1, 13], 14=[1, 2, 7, 14], 15=[1, 3, 5, 15], 16=[1, 2, 4, 8, 16], 17=[1, 17], 18=[1, 2, 3, 6, 9, 18], 19=[1, 19], 20=[1, 2, 4, 5, 10, 20], 21=[1, 3, 7, 21], 22=[1, 2, 11, 22], 23=[1, 23], 24=[1, 2, 3, 4, 6, 8, 12, 24], 25=[1, 5, 25], 26=[1, 2, 13, 26], 27=[1, 3, 9, 27], 28=[1, 2, 4, 7, 14, 28], 29=[1, 29], 30=[1, 2, 3, 5, 6, 10, 15, 30], 31=[1, 31], 32=[1, 2, 4, 8, 16, 32], 33=[1, 3, 11, 33], 34=[1, 2, 17, 34], 35=[1, 5, 7, 35], 36=[1, 2, 3, 4, 6, 9, 12, 18, 36], 37=[1, 37], 38=[1, 2, 19, 38], 39=[1, 3, 13, 39], 40=[1, 2, 4, 5, 8, 10, 20, 40], 41=[1, 41], 42=[1, 2, 3, 6, 7, 14, 21, 42], 43=[1, 43], 44=[1, 2, 4, 11, 22, 44], 45=[1, 3, 5, 9, 15, 45], 46=[1, 2, 23, 46], 47=[1, 47], 48=[1, 2, 3, 4, 6, 8, 12, 16, 24, 48], 49=[1, 7, 49], 50=[1, 2, 5, 10, 25, 50], 51=[1, 3, 17, 51], 52=[1, 2, 4, 13, 26, 52], 53=[1, 53], 54=[1, 2, 3, 6, 9, 18, 27, 54], 55=[1, 5, 11, 55], 56=[1, 2, 4, 7, 8, 14, 28, 56], 57=[1, 3, 19, 57], 58=[1, 2, 29, 58], 59=[1, 59], 60=[1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60], 61=[1, 61], 62=[1, 2, 31, 62], 63=[1, 3, 7, 9, 21, 63], 64=[1, 2, 4, 8, 16, 32, 64], 65=[1, 5, 13, 65], 66=[1, 2, 3, 6, 11, 22, 33, 66], 67=[1, 67], 68=[1, 2, 4, 17, 34, 68], 69=[1, 3, 23, 69], 70=[1, 2, 5, 7, 10, 14, 35, 70], 71=[1, 71], 72=[1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72], 73=[1, 73], 74=[1, 2, 37, 74], 75=[1, 3, 5, 15, 25, 75], 76=[1, 2, 4, 19, 38, 76], 77=[1, 7, 11, 77], 78=[1, 2, 3, 6, 13, 26, 39, 78], 79=[1, 79], 80=[1, 2, 4, 5, 8, 10, 16, 20, 40, 80], 81=[1, 3, 9, 27, 81], 82=[1, 2, 41, 82], 83=[1, 83], 84=[1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84], 85=[1, 5, 17, 85], 86=[1, 2, 43, 86], 87=[1, 3, 29, 87], 88=[1, 2, 4, 8, 11, 22, 44, 88], 89=[1, 89], 90=[1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90], 91=[1, 7, 13, 91], 92=[1, 2, 4, 23, 46, 92], 93=[1, 3, 31, 93], 94=[1, 2, 47, 94], 95=[1, 5, 19, 95], 96=[1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96], 97=[1, 97], 98=[1, 2, 7, 14, 49, 98], 99=[1, 3, 9, 11, 33, 99], 100=[1, 2, 4, 5, 10, 20, 25, 50, 100]}
        {1=1, 2=2, 3=2, 4=3, 5=2, 6=4, 7=2, 8=4, 9=3, 10=4, 11=2, 12=6, 13=2, 14=4, 15=4, 16=5, 17=2, 18=6, 19=2, 20=6, 21=4, 22=4, 23=2, 24=8, 25=3, 26=4, 27=4, 28=6, 29=2, 30=8, 31=2, 32=6, 33=4, 34=4, 35=4, 36=9, 37=2, 38=4, 39=4, 40=8, 41=2, 42=8, 43=2, 44=6, 45=6, 46=4, 47=2, 48=10, 49=3, 50=6, 51=4, 52=6, 53=2, 54=8, 55=4, 56=8, 57=4, 58=4, 59=2, 60=12, 61=2, 62=4, 63=6, 64=7, 65=4, 66=8, 67=2, 68=6, 69=4, 70=8, 71=2, 72=12, 73=2, 74=4, 75=6, 76=6, 77=4, 78=8, 79=2, 80=10, 81=5, 82=4, 83=2, 84=12, 85=4, 86=4, 87=4, 88=8, 89=2, 90=12, 91=4, 92=6, 93=4, 94=4, 95=4, 96=12, 97=2, 98=6, 99=6, 100=9}

        • How do I list all numbers between 1 and 100 that have odd numbers as the number of factors? Just find all of the square numbers. Since they are square, that means that they have 2 of same number, otherwise it would just have pairs of numbers.
          • 就是因式分解。但是很难总结一个通用公式
            • 你要找因式分解的通用公式?好像不存在
              Answer (1 of 6): The function that counts the factors of a given number is called the divisor function. It's usually denoted by \sigma(n). If you only need to know the parity of \sigma(n), you're in luck: the number of divisors is odd if and only if n is a perfect square. Why? Divisors come in ...
      • 孩子自己做出来了。发现我们想的太复杂了,根本不需要因式分解。 只需要 考虑 一个数字能否被 1, 2, 3..... 15 整除即可
        • 这是典型的prime factorization问题,虽然是个NP问题,但你这一个一个试实在是太慢了,一般是用相对快速的p-fact方法来,然后用我的公式即可得出coloring的数量。如果不使用质数分解法,则也不用测那么多,sqrt(N)以下做整除测试即可然后+1 (本身) +2
    • 首先给出的数字为N,则其实是找所有d<=N且d=0 mod N, +2
      根据中国剩余定理则必然有 Z/N同构于 Z/p1^k1 X Z /p2^k2 X..... Z/pn^kn, pn为分解质数。则根据欧几里德算法得出,为 PI (kn+1) n属于pn。 举个栗子,如果是数字48,则根据中国剩余定理可以得到交换群分解为: Z/2^4 X Z/3, 根据我上面的公式则为,(4+1) * (1+1)=10, 即数字48有10个染色。
      • 没有学过s剩余定理
        • 这个题目的目的就是给大学生介绍质数环模,环模的组合,而环模组合必然要在后续课程开始对中国剩余定理的展开。 +2